Hydra API User's Manual

Hydra API

User's Manual

Python Library for Gen6 JBOF Control
and NVMe Validation

Serial Cables, LLC

www.serialcables.com

Document Version: 1.0
December 2025

Serial Cables, LLC « Page 1 of 6

Hydra API User's Manual

1. Overview

The Hydra API (serialcables-hydra) is the official Python library for Serial Cables' Hydra
Gen6 8-bay JBOF platform. It provides complete programmatic control over the enclosure,
enabling automated NVMe and CXL device validation from Python scripts, CLI, or integration
with existing test frameworks.

Designed for PCle/NVMe validation engineers, the Hydra API abstracts low-level hardware
communication while exposing the full capabilities of the Hydra platform for test automation
and lab integration.

1.1 Key Features

+ Slot Control — Per-slot power sequencing, hot-plug simulation, and EDSFF
presence detection

* Thermal Management — SSD temperature monitoring and dual-fan RPM control

* Power Telemetry — Real-time current draw and voltage rail monitoring

* NVMe-MI/ MCTP — Native sideband command support for out-of-band device
management

» LED Control — Front-panel activity, error, and pass/fail indicator management

* Telemetry Export — Data streaming and logging for regression analysis

* QuarchPy Integration — Optional power analysis with Quarch PAM/Breaker
mezzanine cards

1.2 Supported Hardware

The Hydra API supports the Serial Cables Gen6 Hydra JBOF (PCI6-ENC8-E3-08) with all
EDSFF form factors: E3.S 2T, E3.L, and E3.L 2T. Optional Quarch mezzanine integration
requires compatible paddle cards.

2. Installation

2.1 Requirements

» Python 3.8 or higher
» USB connection to Hydra enclosure
» Serial port drivers (typically auto-installed on modern OS)

2.2 PyPI Installation

Install the latest version from PyPI:
pip install serialcables-hydra

2.3 Optional Dependencies

For Quarch mezzanine support, install QuarchPy:
pip install quarchpy

3. Quick Start

3.1 Basic Connection

Connect to a Hydra enclosure and query basic status:
from serialcables hydra import Hydra

Auto-discover and connect

Serial Cables, LLC « Page 2 of 6

Hydra API User's Manual

hydra = Hydra.discover ()

Or connect to specific port
hydra = Hydra ("/dev/ttyUSB0O")

Get enclosure information
print (hydra.info())
print (hydra.status())

3.2 Slot Operations
Check slot presence
for slot in range(8):
present = hydra.slot present(slot)
print (f"Slot {slot}: {"Populated" if present else "Empty"}")

Power control
hydra.slot power off (0)

hydra.slot power on(0)

Hot-plug simulation
hydra.slot hotplug cycle (0, delay ms=500)

Serial Cables, LLC « Page 3 of 6

Hydra API User's Manual

4. API| Reference

4.1 Hydra Class
The main interface for Hydra enclosure control.

discover () Auto-discover and connect to Hydra enclosure
info () Return enclosure information (model, serial, firmware)
status () Return current enclosure status summary
slot_present (n) Check if device is present in slot n (0-7)
slot_power_on(n) Enable power to slot n

slot_power off (n) Disable power to slot n

slot_hotplug_cycle (n) Perform hot-plug removal and insertion cycle
get_temperature (n) Read temperature sensor for slot n (°C)
get_power (n) Read power consumption for slot n (Watts)
set_fan_rpm (rpm) Set enclosure fan speed (RPM)

set_led(n, state) Control slot LED (activity, error, pass, fail)
mctp_send(n, msg) Send MCTP message to device in slot n

nvme_mi_cmd(n, cmd) Execute NVMe-MI command on slot n

4.2 Telemetry
The Hydra API provides real-time telemetry collection for logging and analysis.

Start telemetry collection

hydra.telemetry.start (interval ms=1000)

Export to CSV

hydra.telemetry.export ("test run 001.csv")

Stop collection
hydra.telemetry.stop ()

Serial Cables, LLC « Page 4 of 6

Hydra API User's Manual

5. Integration

5.1 Atlas3 Switch Integration

The Hydra APl works seamlessly with the Atlas3 PCle switch API for complete
upstream/downstream control.
from serialcables atlas3 import Atlas3

from serialcables hydra import Hydra

atlas = Atlas3.discover ()

hydra = Hydra.discover ()

Coordinate switch and JBOF for test sequence
atlas.link disable (port=4)
hydra.slot power off (0)

... perform maintenance

5.2 Hermes Redriver Integration
Combine with the Hermes Redriver API for signal integrity tuning in Gen6 test setups.

from serialcables hermes import Hermes

from serialcables hydra import Hydra

hermes = Hermes.discover ()

hydra = Hydra.discover ()

Tune redriver before powering slot
hermes.set eqg(channel=0, db=12.5)
hydra.slot power on(0)

5.3 QuarchPy Integration

For Hydra units equipped with Quarch PAM or Breaker mezzanine cards, use QuarchPy
alongside the Hydra API for detailed power analysis.
import quarchpy

from serialcables hydra import Hydra

hydra = Hydra.discover ()
pam = quarchpy.PAM.discover ()

Correlate JBOF events with power measurements
pam.start capture ()
hydra.slot hotplug cycle (0)

pam.stop capture ()

Serial Cables, LLC « Page 5 of 6

Hydra API User's Manual

6. Command Line Interface
The Hydra API includes a CLI for quick operations without writing Python code.

Show enclosure status
hydra-cli status

Power cycle slot 3
hydra-cli slot 3 power-cycle

Set fan speed
hydra-cli fan --rpm 2500

Start telemetry logging
hydra-cli telemetry --output test.csv --interval 500

7. Safety Considerations

* Power Sequencing — Always follow proper power-on/off sequencing to avoid
device damage

* Thermal Limits — Monitor SSD temperatures and ensure adequate cooling before
extended tests

* Hot-Plug Testing — Verify host system supports surprise removal before using hot-
plug functions

» ESD Protection — Use proper ESD precautions when handling EDSFF devices

8. Support

Website: www.serialcables.com

Email: support@serialcables.com

Sales: sales@serialcables.com

Phone: +1 303-810-5110

PyPIl Package: pip install serialcables-hydra

© 2025 Serial Cables, LLC. All rights reserved.
Hydra, Atlas3, and Hermes are trademarks of Serial Cables, LLC.

Serial Cables, LLC « Page 6 of 6

